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Objective: In the Alzheimer’s Disease Neuroimaging Initiative (ADNI), cognitive function was tracked
across multiple years by a comprehensive neuropsychological battery. In this study, we examined the latent
structure of the ADNI battery and evaluated the invariance of that structure among diagnostic groups and
over time. Method: We used exploratory and confirmatory factor analyses to investigate the invariance of
the ADNI battery’s latent factor structure among three diagnostic groups (healthy controls, patients with
mild cognitive impairment, patients with Alzheimer’s disease) over a 2-year interval (baseline, 6 months,
12 months, 24 months). Results: The results revealed a five-factor structure for the ADNI battery (memory,
visuospatial processing, attention, language, executive function). This structure displayed configural
invariance but not weak, strong, or strict invariance across the three diagnostic groups. Longitudinally,
configural, weak, strong, and strict invariance were all established within each diagnostic group, except that
strict invariance was rejected in healthy controls. Conclusions: The ADNI battery assesses the same
cognitive abilities in the three diagnostic groups, but test scores do not calibrate to these abilities equally in
the respective groups, making certain statistics (e.g., factor scores) noncomparable between groups. Within
each group, the latent structure and the numerical relations between individual tests and underlying factors
remained invariant over 2 years, suggesting that this battery is a reliable tool for tracking longitudinal
changes in specific cognitive abilities within individual diagnostic groups.

Key Points
Question: Does the ADNI neuropsychological battery measure the same cognitive functions in the same
way across diagnostic groups and over time? Findings: The ADNI battery measures the same cognitive
functions in the same way over time, but in different ways across diagnostic groups. Importance: It is
inappropriate to directly compare composite scores or factor scores of the ADNI battery across diagnostic
groups. Next Steps: Future studies are recommended to examine the validity of between-group
comparisons with other neuropsychological batteries and other samples.
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Alzheimer’s disease (AD) is a neurodegenerative brain condition
that causes gradual loss of cognitive functions (especially memory
and language), and eventually, death. Mild cognitive impairment
(MCI) is AD’s prodromal stage, during which individuals have
clinically significant impairment in one of the five cognitive do-
mains that figure in dementia diagnoses, usually episodic memory
(Petersen, 2004, 2011). As life expectancy has increased in the
United States, the death rate from AD has increased 146% between
2000 and 2018, making it the fifth leading cause of mortality in
adults aged 65 or older (Alzheimer’s Association, 2020). One of the
priorities of AD research is to develop methods of diagnosing it at its
earliest stages, when interventions can be most effective (Mueller
et al., 2005b). Here, considerable effort has been devoted to identi-
fying cognitive, biological and neuroimaging markers of AD, with
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) being one
of the most extensive projects of this sort (Mueller et al., 2005a;
Weiner & Veitch, 2015).
The ADNI is an ongoing, longitudinal, multicenter study that

aims at advancing knowledge about diagnosis and progression of
AD. The original 5-year study, ADNI 1, recruited large samples of
healthy controls (HC), MCI, and AD subjects and evaluated
changes in cognitive, biological, and neuroimaging markers
over multiple sessions. Cognitive markers were measured with a
comprehensive neuropsychological battery, which incorporated
gold-standard assessments for multiple domains, including epi-
sodic memory, language, attention, visuospatial processing, and
executive function. Since the ADNI’s inception, several analyses
of data from portions of this neuropsychological battery have been
published (e.g., Brainerd et al., 2014; Crane et al., 2012; Gibbons
et al., 2012; Johnson et al., 2012; Park et al., 2012; Petersen
et al., 2010).
A common practice in analyzing the ADNI battery data is to

compare the instrument scores, composite scores (i.e., the average
of multiple instrument scores), or factor scores (i.e., the estimated
values of latent factors) between diagnostic groups (e.g., Crane
et al., 2012; Giraldo et al., 2017; Petersen et al., 2010). In such
work, researchers implicitly assume that the neuropsychological
tests are measuring the same underlying cognitive functions in the
same way, across different diagnostic groups. Psychometrically,
such assumptions are referred to as measurement invariance. If
measurement invariance does not hold, a neuropsychological bat-
tery can be biased against particular diagnostic groups, which
renders between-group comparisons invalid (Wu et al., 2007).
However, despite the fundamental importance of measurement
invariance, it has received only limited attention to date
(Meredith & Teresi, 2006; Vandenberg & Lance, 2000).
Normally, measurement invariance is evaluated with multigroup

confirmatory factor analysis (MG-CFA; Mungas et al., 2011; Wu
et al., 2007). This approach views measurement invariance as a
form of factorial invariance. To test factorial invariance, researchers
place equality restrictions on a series of multigroup models and test
model fits. Such analyses determine whether a neuropsychological
battery is assessing the same latent factors across groups and
whether the associations between test items and latent factors remain
invariant across groups. The results of these invariance tests, in turn,
decide whether valid comparisons can be made between groups. We
will discuss some further details of factorial invariance tests in the
Method section.

Factorial Invariance Across Diagnostic Groups in
Cognitive Aging

In the cognitive aging literature, considerable research has been
devoted to establishing factorial invariance of neuropsychological
batteries among groups of different ages or genders (de Frias &
Dixon, 2005; Dowling et al., 2010; Rawlings et al., 2016) and
groups with different natural languages or ethnicities (Flores
et al., 2017; Mungas et al., 2011; Pedraza et al., 2005; Siedlecki
et al., 2010; Tuokko et al., 2009). However, data on factorial
invariance among groups of older adults with different degrees
of cognitive impairment are quite thin and mixed, considering their
clinical importance. As discussed below, some studies suggest that
factor structures vary with clinical diagnoses (Delis et al., 2003;
Jones & Ayers, 2006; Kanne et al., 1998; Siedlecki et al., 2008),
whereas others favor factorial invariance (Hayden et al., 2011;
Johnson et al., 2008; Mitchell et al., 2012; Park et al., 2012).

Evidence for Factorial Instability

Kanne et al. (1998) applied principal components analyses (PCA)
to data generated by the neuropsychological battery of the Alzhei-
mer’s Disease Research Center (ADRC). They found that although a
one-factor model accounted for the data of an HC group, the data of a
very mild AD group and a mild AD group required a three-factor
model (verbal memory, visuospatial processing, executive control).
Similarly, Jones and Ayers (2006) conducted exploratory factor
analyses (EFA) of data from the expanded Consortium to Establish
a Registry for Alzheimer’s Disease (CERAD) battery. Their results
yielded a one-factor solution for a demented group but a two-factor
solution (dementia severity, memory) for a mixed group of demented
and nondemented subjects. Moreover, Delis et al. (2003) found that
the California Verbal Learning Test (CVLT), an episodic memory
battery, yielded a one-factor solution for an HC group, but a two-
factor solution for an AD group. The difference lay in whether
immediate and delayed memory tests loaded on the same or separate
factors. Thus, these three investigations showed that the neuropsy-
chological performance of demented and nondemented groups did
not share a common factor structure, indicating that some instruments
may tap different cognitive functions in different groups.

Although these studies all argue against factorial invariance, none
of them formally evaluated factorial invariance with MG-CFA.
Consequently, although the studies revealed different factor struc-
tures for different groups, they did not establish that between-group
factor differences were statistically reliable. Siedlecki et al. (2008)
filled this gap by conducting MG-CFA for the ADRC battery,
comparing HC, questionable dementia (QD), and probable AD
groups. In addition, they also conducted EFA for each diagnostic
group. The MG-CFA results revealed that the factor structures were
significantly different across the three diagnostic groups. The EFA
results showed that the key difference was that the probable AD
group exhibited two episodic memory factors (immediate and
delayed memory), whereas the other two groups exhibited only one.

Evidence for Factorial Invariance

In contrast to the above studies, Johnson et al. (2008) reported that
a model with a general cognitive factor and three specific factors
(verbal memory, working memory, visuospatial processing)
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accounted for the data of a 12-item neuropsychological battery in both
HC and demented groups. However, this battery did not contain tests
for other cognitive domains that are routinely included in neuropsy-
chological batteries, such as executive function and attention.
Using a more comprehensive battery (from the National Alzhei-

mer’s Disease Coordinating Center [NACC]), Hayden et al. (2011)
identified a four-factor model (memory, attention, executive func-
tion, language) that was invariant across HC, MCI, and demented
groups. In addition, that structure remained stable over a 1-year
interval. Soon thereafter, Mitchell et al. (2012) reported a similar
pattern with the same battery. They identified a four-factor model
(memory/language, processing speed/executive function, attention,
cognitive reserve), and it proved to be invariant across two groups
(HC and mixed amnestic-MCI/AD).
In addition, Park et al. (2012) reported an MG-CFA of the

baseline data for the ADNI neuropsychological battery, the battery
that figures in the current article. Their analysis was focused on an a
priori model in which five distinct factors reflect the specific
cognitive functions that the battery is assumed to tap (memory,
language, visuospatial processing, attention, executive function).
Their MG-CFA results supported this five-factor model and showed
that it was invariant between the less andmore functionally impaired
groups.

The Present Study

As we have just seen, available findings on whether the factor
structure of neuropsychological batteries is invariant across diag-
nostic groups in older adults are neither extensive nor consistent.
Moreover, as far as we are aware, there is only one study examining

factorial invariance for the ADNI battery (Park et al., 2012), which
is obviously insufficient considering the ADNI’s substantial impact
on cognitive aging research (Weiner et al., 2015, 2017).

In the current article, we report an expansion of work on factorial
invariance for the ADNI battery. The ADNI subject pool consists of
three diagnostic groups (HC,MCI, andAD), each ofwhich contains a
large number of subjects. After baseline testing in the ADNI 1,
follow-up testing occurred at 6-month intervals for 5 years, with the
full neuropsychological battery being readministered on each occa-
sion. We analyzed data from the first 2 years of testing, during which
subject samples remained large, in order to determine whether the
underlying factor structure of the battery remained stable across
diagnostic groups and over time. We first conducted EFAs for
each diagnostic group in each testing session, which allowed us to
formalize the core cognitive abilities that the battery taps. Then, we
evaluated the results of the EFAswith CFAs by fitting models to each
group within each session, which is a prerequisite for evaluating
multigroup invariance (Brown, 2015). Finally, we tested factorial
invariance with a series of MG-CFAs, both between the three
diagnostic groups and across the 2 years of testing.

Method

Subjects

Data analyzed in this article were obtained from the ADNI
database (http://adni.loni.usc.edu/). Because full details of the
ADNI 1 subject sample have been provided in several prior pub-
lications (e.g., Weiner & Veitch, 2015), we only report key demo-
graphic characteristics in Table 1, without elaboration. We
originally planned to include five distinct testing sessions (baseline,

Table 1
Demographic Characteristics for ADNI Subjects

Session Characteristics

Group

HC MCI AD

Baseline
Sample size 206 364 178
Age 75.89 (4.96) 74.84 (7.25) 75.6 (7.45)
Education 16.1 (2.92) 15.7 (2.96) 14.85 (3.09)
Gender, female (%) 49.03% 34.89% 48.88%
APOE ε4 carriers (%) 23.79% 55.49% 65.17%

6 months
Sample size 204 325 188
Age 76.39 (5.23) 75.46 (7.16) 75.71 (7.45)
Education 16.08 (2.91) 15.69 (2.95) 14.94 (3.08)
Gender, female (%) 47.55% 35.08% 47.34%
APOE ε4 carriers (%) 24.02% 56.62% 65.96%

12 months
Sample size 197 269 213
Age 76.75 (5.34) 76.3 (7.14) 76.14 (7.29)
Education 16.15 (2.81) 15.88 (2.94) 15.02 (3.04)
Gender, female (%) 48.73% 34.57% 45.07%
APOE ε4 carriers (%) 23.35% 55.39% 65.26%

24 months
Sample size 191 169 234
Age 77.9 (5.43) 76.9 (6.88) 77.1 (7.3)
Education 16.18 (2.81) 15.89 (2.87) 15.03 (3.11)
Gender, female (%) 46.60% 34.91% 44.44%
APOE ε4 carriers (%) 25.65% 48.52% 69.23%

Note. ADNI = Alzheimer’s Disease Neuroimaging Initiative; HC = healthy control; MCI = mild cognitive impairment; AD = Alzheimer’s disease.
Standard deviations are shown in parentheses.
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6 months, 12 months, 18 months, 24 months) in our analyses. The
neuropsychological battery was administered in full during each
session. However, a preliminary review of the data revealed that
substantially fewer subjects were tested during the 18-month session
than during the other four sessions. Consequently, the analyses were
confined to data from the baseline, 6-, 12-, and 24-month sessions.
Clinical diagnoses of individual subjects were established at

baseline and were also reestablished during each subsequent session
(Mueller et al., 2005b). Subjects in the HC, MCI, and AD groups
were carefully screened and classified, according to five criteria: (a)
memory impairment: MCI and AD subjects must have memory
complaints whereas HC subjects must not; (b) education-adjusted
scores for the Logical Memory II subscale of the Wechsler Memory
Scale-Revised (Wechsler, 1987): for ≥16 years of education, HC
subjects must have scores ≥9, MCI subjects 9–11, AD subjects ≤8;
for 8–15 years of education, HC subjects must have scores ≥5, MCI
subjects 5–9, AD subjects ≤4; for 0–7 years of education, HC
subjects must have scores ≥3, MCI subjects 3–6, AD subjects ≤2;
(c) Mini Mental State Exam scores: HC andMCI subjects must have
scores between 24 and 30, and AD subjects must have scores
between 20 and 26; (d) Clinical Dementia Rating (CDR; Morris,
1993) scores: HC subjects must have both total score and memory
box score = 0; MCI subjects must have both total score and
memory box score = 0.5 (This means that the MCI sample is
overwhelmingly amnestic-MCI, which is the most common sub-
type); AD subjects must have total score = 0.5 or 1; (e) general
cognition and functioning: HC subjects must have no significant
impairment in normal cognitive functions or daily living; MCI
subjects must have relatively preserved general cognitive and
functional performance that the site physicians cannot make an
AD diagnosis; and AD subjects must have met the National Institute
of Neurological and Communicative Disorders and Stroke–Alzhei-
mer’s Disease and Related Disorders Association (NINCDS/
ADRDA) criteria for probable AD. Full details of the screening
criteria can be found in the ADNI 1 Procedures Manual (http://adni
.loni.usc.edu/methods/documents/).

Measures

Complete details of the neuropsychological battery and assess-
ment methods can be found in the ADNI 1 Procedures Manual.
Sixteen variables of interest (from seven neuropsychological tests)
were selected for the factor analyses, as described below. The
descriptive statistics for the 16 variables across the three diagnostic
groups (HC, MCI, AD) over the four sessions (baseline, 6 months,
12 months, 24 months) are summarized in Table 2.

Episodic Memory Tests

Alzheimer’s Disease Assessment Scale—Cognitive (ADAS-
Cog), Delayed Recall and Recognition. ADAS-Cog (Rosen
et al., 1984) has been widely used in clinical trials for AD. In
the word recall task, subjects are presented with 10 high-frequency
high-imagery nouns and are asked to recall as many as they can. This
is followed by two additional trials of study and recall for the same
word list. After the three study-recall trials, subjects complete two
other subtests of the ADAS-Cog, followed by a delayed recall test
for the 10 words. Subsequently, subjects complete three other
subtests of ADAS-Cog and are then administered a recognition

test. In this task, subjects first study 12 words, followed by an old–
new recognition test composed of 24 words (the 12 old ones + 12
new ones). We included the percentage of correct delayed recall and
the percentage of correct recognition in our factor analyses. We did
not include immediate recall, because it was too strongly correlated
with delayed recall for the two measures to pass discriminant
validity tests, which can cause incorrect factor analyses. We origi-
nally considered using the recall decline between the third immedi-
ate test and the delayed test as an indicator of forgetting, but that
measure produced too many negative values to be practicable.

Rey Auditory Verbal Learning Test, Recall and
Forgetting. The Rey Auditory Verbal Learning Test (RAVLT;
Rey, 1964) is the classic clinical episodic memory test. Subjects first
complete five study-recall trials for a single 15-word list (List A). Next,
they study a new 15-word list (List B) and complete an immediate free
recall for List B. After that, the subjects are asked to again recall List A.
Finally, after a 30 min delay, subjects are asked to recall List A again.
For the current study, we used the average percentage of correct recall
on the first five trials as an indicator of recall accuracy, and the
percentage of recall decline between the fifth recall test and the delayed
test after 30 min as an indicator of forgetting.

Visuospatial Processing Tests

Clock Drawing Test, Command and Copy. Clock Drawing
Test (CDT) is designed to measure construction abilities, and it
consists of two parts: command and copy. In the command part,
subjects follow the test administrator’s instruction to draw a clock,
such as “draw the face of a clock showing the numbers and two
hands set to ten after eleven.” In the copy part, subjects are presented
with a clock printed on a response sheet and are instructed to copy it.
CDT scores take into account approximate circular shape, symmetry
of number placement, presence of hands, and accuracy of number
and hand placement. We included both the CDT command and copy
scores in our analysis.

ADAS-Cog, Construction Praxis Test. This test measures
subjects’ ability to copy four geometric figures: a circle, a pair of
overlapping rectangles, a diamond (rhombus), and a cube. The
figures are presented individually, in the order just described. A
subject’s score is simply the total number of figures correctly copied,
and we used that score in our analyses.

Executive Function Tests

Trail Making Test, Parts A and B. The Trail Making Test
(TMT; Reitan & Wolfson, 1985) is a test of processing speed and
executive function. It consists of two parts. In Part A, subjects are
required to draw a line to connect a series of numbers in ascending
numerical order. In Part B, they are asked to draw a line to connect a
series of numbers and letters alternately in ascending numerical and
alphabetical order. Part A is meant to test visuomotor and visual
scanning abilities, and Part B is meant to test these two abilities plus
cognitive shifting. TMT scores are the total time used to complete
each part, with a maximum of 150 s allowed for Part A and a
maximum of 300 s allowed for Part B. We included both the Part A
and the Part B scores in our analyses.

ADAS-Cog, Number Cancellation Test. This is a test for
visual attention and processing speed, in which subjects are in-
structed to cross out two designated letters within several lines of
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Table 2
Descriptive Statistics of the ADNI Neuropsychological Battery

Sessions Assessments HC MCI AD p value p < .05*

Baseline
ADAS delayed recall .72 (.17) .38 (.23) .13 (.15) <.001 a, b, c
ADAS recognition .79 (.19) .62 (.22) .45 (.23) <.001 a, b, c
RAVLT recall .58 (.12) .41 (.12) .31 (.10) <.001 a, b, c
RAVLT forgetting .35 (.26) .67 (.31) .88 (.23) <.001 a, b, c
CDT command 4.68 (.66) 4.18 (.99) 3.35 (1.32) <.001 a, b, c
CDT copy 4.88 (.39) 4.63 (.70) 4.34 (.99) <.001 a, b, c
ADAS construction 4.63 (.49) 4.45 (.57) 4.13 (.68) <.001 a, b, c
Digit span forward 8.75 (1.97) 8.21 (1.96) 7.55 (1.88) <.001 a, b, c
Digit span backward 7.18 (2.16) 6.14 (2.03) 5.03 (1.83) <.001 a, b, c
CFT animal 20.00 (5.57) 16.00 (4.86) 12.39 (5.00) <.001 a, b, c
CFT vegetable 14.89 (3.88) 10.76 (3.39) 7.81 (3.36) <.001 a, b, c
Boston naming test 27.83 (2.34) 25.56 (4.04) 22.13 (6.30) <.001 a, b, c
ADAS naming 4.93 (.26) 4.74 (.50) 4.46 (.80) <.001 a, b, c
TMT Part A 36.88 (13.11) 44.01 (21.26) 67.19 (34.87) <.001 a, b, c
TMT Part B 89.37 (42.40) 128.04 (68.39) 193.52 (81.07) <.001 a, b, c
ADAS cancellation 4.57 (.62) 4.04 (.98) 3.15 (1.33) <.001 a, b, c

6 months
ADAS delayed recall .73 (.17) .37 (.24) .13 (.17) <.001 a, b, c
ADAS recognition .81 (.17) .61 (.25) .38 (.24) <.001 a, b, c
RAVLT recall .56 (.13) .38 (.12) .27 (.10) <.001 a, b, c
RAVLT forgetting .36 (.25) .73 (.29) .93 (.18) <.001 a, b, c
CDT command 4.64 (.62) 4.14 (1.05) 3.28 (1.39) <.001 a, b, c
CDT copy 4.85 (.36) 4.64 (.66) 4.18 (1.16) <.001 a, b, c
ADAS construction 4.61 (.53) 4.45 (.59) 4.10 (.78) <.001 a, b, c
Digit span forward 8.80 (1.91) 8.06 (2.04) 7.36 (2.02) <.001 a, b, c
Digit span backward 7.18 (2.24) 6.00 (1.93) 5.08 (1.98) <.001 a, b, c
CFT animal 20.35 (5.61) 15.66 (4.85) 11.72 (4.60) <.001 a, b, c
CFT vegetable 14.32 (4.21) 10.44 (3.74) 7.55 (3.56) <.001 a, b, c
Boston naming test 28.22 (2.08) 25.55 (4.60) 22.11 (6.26) <.001 a, b, c
ADAS naming 4.95 (.25) 4.73 (.51) 4.43 (.81) <.001 a, b, c
TMT Part A 33.86 (12.04) 44.45 (19.93) 67.59 (37.51) <.001 a, b, c
TMT Part B 84.26 (38.77) 129.28 (70.07) 202.47 (80.81) <.001 a, b, c
ADAS cancellation 4.38 (.72) 3.94 (.98) 3.02 (1.34) <.001 a, b, c

12 months
ADAS delayed recall .72 (.19) .37 (.24) .12 (.15) <.001 a, b, c
ADAS recognition .84 (.15) .64 (.26) .39 (.25) <.001 a, b, c
RAVLT recall .59 (.14) .41 (.13) .28 (.11) <.001 a, b, c
RAVLT forgetting .33 (.26) .63 (.33) .86 (.24) <.001 a, b, c
CDT command 4.69 (.61) 4.17 (1.03) 3.25 (1.39) <.001 a, b, c
CDT copy 4.85 (.41) 4.65 (.66) 4.12 (1.21) <.001 a, b, c
ADAS construction 4.6 (.57) 4.46 (.62) 4.13 (.81) <.001 a, b, c
Digit span forward 8.84 (1.93) 8.09 (2.10) 7.25 (2.07) <.001 a, b, c
Digit span backward 7.31 (2.32) 6.05 (2.07) 4.94 (1.92) <.001 a, b, c
CFT animal 20.69 (5.35) 15.88 (5.73) 11.55 (4.85) <.001 a, b, c
CFT vegetable 14.76 (4.26) 10.73 (3.85) 7.17 (3.53) <.001 a, b, c
Boston naming test 28.43 (1.92) 25.82 (4.92) 21.57 (6.48) <.001 a, b, c
ADAS naming 4.96 (.32) 4.72 (.59) 4.41 (.81) <.001 a, b, c
TMT Part A 34.23 (10.11) 43.64 (21.03) 64.39 (35.08) <.001 a, b, c
TMT Part B 80.4 (36.6) 127.8 (71.51) 197.84 (86.17) <.001 a, b, c
ADAS cancellation 4.59 (.83) 4.18 (1.03) 3.08 (1.54) <.001 a, b, c

24 months
ADAS delayed recall .73 (.18) .38 (.24) .12 (.17) <.001 a, b, c
ADAS recognition .81 (.18) .61 (.23) .36 (.25) <.001 a, b, c
RAVLT recall .60 (.14) .42 (.13) .26 (.12) <.001 a, b, c
RAVLT forgetting .31 (.28) .62 (.31) .82 (.25) <.001 a, b, c
CDT command 4.71 (.62) 4.36 (.80) 3.02 (1.42) <.001 a, b, c
CDT copy 4.85 (.38) 4.65 (.68) 3.95 (1.34) <.001 a, b, c
ADAS construction 4.68 (.47) 4.54 (.58) 3.94 (1.00) <.001 a, b, c
Digit span forward 8.94 (2.02) 8.07 (2.04) 6.85 (2.29) <.001 a, b, c
Digit span backward 7.51 (2.24) 6.41 (2.14) 4.70 (2.04) <.001 a, b, c
CFT animal 20.88 (5.67) 15.78 (4.95) 10.59 (5.52) <.001 a, b, c
CFT vegetable 14.83 (4.20) 10.78 (3.95) 6.42 (3.97) <.001 a, b, c
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mixed letters. The maximum time allowed was 45 s. We included
the cancellation test score in our analyses, which is the number of
letters correctly crossed out minus the number of letters incorrectly
crossed out. The test score was transformed into a 5-point scale.

Attention Tests

Digit Span, Forward, and Backward. Digit span is a test for
attention and working memory. In the forward part, the administra-
tor reads five numbers to each subject, and the subject is required to
repeat the numbers in the same order. In the backward part, the
administrator reads three numbers to each subject, and the subject is
required to repeat the numbers in reverse order. We used both total
correct forward and backward span in our factor analyses.

Language Tests

Category Fluency Test (CFT), Animals and Vegetables. The
CFT (Harrison et al., 2000) is a measure of semantic memory. In two
separate 20-s trials, subjects are required to generate exemplars of a
given semantic category (animal or vegetable). In each instance, the
test score is the number of correct unique exemplars named. The total
score for animals and the total score for vegetables were used in our
factor analyses.
Boston Naming Test (BNT). This is a test of object recognition

and naming (Goodglass et al., 1983). Subjects are presented with 30
black-and-white line drawings, and they are required to name the object
in each drawing. The drawings are ordered from the most common
(bed) to the least common (protractor). Subjects are given a maximum
of 20 s for each response. If subjects’ responses indicate misperception
of a drawing, a semantic cue is given. If subjects’ responses are still
incorrect, a phonetic cue (the first phoneme of the object’s name) is
given. The BNT score that we used was the total number of correct
responses, regardless of whether or not they were cued.
ADAS-Cog, Naming Test. In this test, subjects are instructed

to name 12 randomly selected objects with high, medium and low
frequency values. They are also required to name the fingers in their
dominant hand. The ADAS naming score is simply the total number
of correct responses, converted into a 5-point scale.

Statistical Analysis

We used both the exploratory (EFA) and confirmatory (CFA)
approaches to identify the latent structure underlying the ADNI
battery and to evaluate its stability across diagnostic groups and
over time. All of our analyses were conducted in R version 3.6.1.

We performed the EFAs with the psych package (Revelle, 2016)
and the CFAs with the lavaan package (Hirschfeld & von Brachel,
2014; Rosseel, 2012). The five tests from the ADAS-Cog (delayed
recall, recognition, construction, number cancellation, and nam-
ing) were all reverse-coded compared to the ADAS-Cog grading
manual. This ensures that higher scores indicate better perfor-
mance, which reduces convergence problems (Gustafsson & Stahl,
2005). We also winsorized the top and bottom 5% of the two timed
tests (TMT Parts A and B) to eliminate outliers, which helped
minimize Heywood case problems (Yuan & Bentler, 2001).

EFA Analyses

An EFA was conducted for each diagnostic group (HC, MCI,
AD) in each of the four sessions (baseline, 6 months, 12 months,
24 months), yielding 12 EFAs. These analyses determined the
model that best captured neuropsychological performance in each
data subset. For all EFAs, we followed the same procedure. To
begin with, we used the Kaiser-Meyer-Olkin (KMO; Kaiser, 1970;
Kaiser & Rice, 1974) measure of sampling adequacy to determine
which variables should be retained in the factor analyses. We
implemented the standard criterion that only variables with a
KMO score >.50 are suitable for factor analysis (Williams et al.,
2010; Yong & Pearce, 2013). Next, we computed Bartlett’s test of
sphericity (Bartlett, 1950) to confirm that the correlation matrix is
significantly different from an identity matrix, which is a prerequi-
site for conducting a factor analysis. The null hypothesis that the
correlation matrix is not significantly different from an identity
matrix was rejected at the .05 level of confidence. Additionally, we
verified that the determinant of the correlation matrix was >.00001,
which ruled out multicollinearity problems.

When determining how many factors to extract, we closely
followed Costello and Osborne’s (2005) recommendations. First,
we ranmultiple factor analyses with factor numbers chosen based on
Kaiser’s criterion (Kaiser, 1958), scree plots (Cattell & Vogelmann,
1977), parallel analysis (Horn, 1965) and a priori factor structure.
As these approaches often suggested different numbers of factors,
we also ran factor analyses with the number of factors set at numbers
above and below these suggested numbers. Finally, we chose the
best-fitting factor solution based on the following criteria: (a)
statistical interpretation (i.e., simple structure); (b) theoretical sig-
nificance (i.e., consistency with the prior literature); (c) parsimony
(i.e., smallest number of factors); and (d) absence of Heywood
cases, because Heywood cases (commonality >1, negative residual
variances; Heywood, 1931) are usually indicators of model

Table 2 (continued)

Sessions Assessments HC MCI AD p value p < .05*

Boston naming test 28.42 (2.21) 26.11 (4.47) 20.64 (7.49) <.001 a, b, c
ADAS naming 4.95 (.21) 4.75 (.59) 4.15 (1.14) <.001 a, b, c
TMT Part A 32.66 (10.82) 42.82 (24.41) 67.95 (38.30) <.001 a, b, c
TMT Part B 83.92 (42.45) 116.60 (63.83) 204.03 (89.28) <.001 a, b, c
ADAS cancellation 4.37 (.82) 3.93 (1.02) 2.65 (1.51) <.001 a, b, c

Note. ADNI = Alzheimer’s Disease Neuroimaging Initiative; HC = healthy control; MCI = mild cognitive impairment; AD = Alzheimer’s disease;
ADAS = Alzheimer’s Disease Assessment Scale; RAVLT = Rey Auditory Verbal Learning test; CDT = Clock Drawing Test; CFT = Categorical
Fluency Test; TMT = Trail Making Test; The p value column indicates whether there is significant difference among the three groups.
*Multiple comparison abbreviations: a = HC differs from MCI; b = MCI differs from AD; c = HC differs from AD.
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misspecification (Brown, 2015; Loehlin & Beaujean, 2016). We
chose oblimin rotations as there were weak to moderate correlations
among factors (Costello & Osborne, 2005). As for factor extraction
methods, we used principal axis factoring because the multivariate
normality assumption was not met (Costello & Osborne, 2005).

CFA Analyses

Following Brown’s (2015) recommendations, we first conducted
single group CFA for each diagnostic group in each of the four
sessions, yielding 12 CFAs. In these CFAs, we tested fits for both
the data-driven and the theory-driven models. The former are the
factor solutions produced by the EFAs, and the latter is a five-factor
model (memory, visuospatial processing, attention, language, exec-
utive function) proposed in prior research with the ADNI baseline
data (Johnson et al., 2012; Park et al., 2012). We originally planned
to pit these models against each other and pick the best-fitting one
for subsequent factorial invariance analyses. However, as will be
seen below, that was unnecessary owing to the high agreement
between the data-driven and theory-driven models.
After establishing fit for each group within each session, we

proceeded to the MG-CFAs. We first determined whether the factor
structure remained stable across each pair of diagnostic groups (HC
vs. MCI, MCI vs. AD, and HC vs. AD) within each testing session.
Second, we evaluated whether each diagnostic group’s factor
structure was invariant over the 24-month interval. Here, we only
considered the clinical diagnoses with respect to each session. In
other words, instead of examining the trajectory of each individual’s
clinical status over time, we focused on the factor structure of the
overall diagnostic group in each session.
In MG-CFAs, we examined four increasingly rigorous levels of

factorial invariance: configural, weak, strong, and strict invariance.
The four levels of invariance are formulated with a nested hierarchy
of models that were imposed with increasingly stringent equality
restrictions (Beaujean, 2014; Brown, 2015; Cudeck & MacCallum,
2007; Wu et al., 2007). The most basic level of invariance, con-
figural invariance or equal form, requires that the number of factors
is the same across groups, and the same items load on the same
factors in all groups. This level of invariance provides strong support
for the hypothesis that the neuropsychological battery measures the
same cognitive functions in all diagnostic groups. Configural invari-
ance is a prerequisite to test subsequent levels of invariance. Weak
invariance or equal factor loadings requires that, in addition to the
identical model configuration, the factor loadings are equal across
groups, which means that the regression slopes between the under-
lying factor scores and the individual test scores are identical in all
groups. This level of invariance must be present in order to compare
the factor variances or covariances across groups. If weak invariance
is rejected, it is meaningless to proceed to test the other two levels of
factorial invariance. Strong invariance or equal intercepts requires
that the factor loadings and their intercepts are invariant across
groups, which means that in addition to equal regression slopes,
mean test scores are the same across groups when factor scores are
zero. This level of invariance is necessary for making inferences
about group differences in latent factor means based on group
differences in test scores. The failure to establish strong invariance
rules out strict invariance. Last, strict invariance requires that factor
loadings, intercepts, and residual variances are all equal; that is, in
addition to strong invariance, any variance in test scores that is not

explained by common factors must be equal across groups. This
indicates that the reliabilities of the individual tests are equal across
groups, and thus any group differences in test scores are entirely due
to differences in the underlying cognitive functions. In the present
study, we placed greater emphasis on the interpretation of config-
ural, weak, and strong invariance, although we still report statistics
for strict invariance when the prior three levels of invariance are all
achieved.

Model fits are traditionally examined with maximum likelihood
tests. Absolute levels of fit are indicated by χ2 values, and compara-
tive fits between two nested models are indicated by differences in
χ2 values (Δχ2; Satorra & Bentler, 2001). However, both χ2and Δχ2

have been criticized for being sensitive to differences in sample size
(Cheung & Rensvold, 2002; Vandenberg & Lance, 2000). To
overcome this limitation, Bentler’s comparative fit index (CFI)
and root mean square of approximation (RMSEA) were developed
as alternative fit indexes and have been commonly used in recent
years. CFI is a goodness-of-fit index with higher values indicating
better fits. It compares fit of a hypothesized model to the fit of a
simpler model while adjusting for model complexity or parsimony
(Iacobucci, 2010). RMSEA is a “badness-of-fit” index with lower
values indicating better fits, and it is relatively robust against
variation in sample size and distribution (Steiger, 1990). Conven-
tionally, CFI ≥ .95 and RMSEA ≤ .06 are used as cutoffs for
excellent fit, and CFI ≥ .90 and RMSEA ≤ .08 are used as cutoffs
for adequate fit (Browne & Cudek, 1993; Hu & Bentler, 1999;
Jöreskog & Sörbom, 1993). We relied primarily on CFI and
RMSEA for model fit decisions for two reasons. First, as discussed
above, they have obvious advantages compared to more traditional
indexes, and they have demonstrated good performance overall
(Hu & Bentler, 1998). Second, they are the most commonly used fit
indexes in prior measurement invariance studies for aging data sets
(e.g., Hayden et al., 2011; Johnson et al., 2008; Park et al., 2012;
Siedlecki et al., 2008), which facilities comparison of our results to
earlier findings. In addition, we report the ΔCFI between adjacent
levels of invariance, where ΔCFI > .01 has been used to indicate
significant differences in fits (Cheung & Rensvold, 2002).

Results

Descriptive statistics for all the neuropsychological instruments
are reported separately for the HC, MCI, and AD groups and for the
four sessions in Table 2. Among the 16 instruments that were
included in the factor analyses, the HC group performed signifi-
cantly better than the MCI and AD groups, and the MCI group
performed significantly better than the AD group.

EFA Results

Results of the EFA analyses are summarized in Table 3. Follow-
ing the usual convention in factor analysis, we treated loadings≥.40
as the cutoff for significant loadings (Lindeman, 1980; Nunnally,
1994), and thus, we only display variables with loadings ≥.40 in
Table 3. Visual inspection of Table 3 reveals two notable patterns.
First, the factor solutions are highly interpretable, which indicates
that the neuropsychological instruments are measuring the expected
cognitive functions. Despite slight deviations among the three
diagnostic groups and across the four sessions, we see that (a)
the episodic memory instruments (ADAS delayed recall, ADAS
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Table 3
Exploratory Factor Analysis Results of the ADNI Neuropsychological Battery for the Three Diagnostic Groups Across the Four Sessions

HC MCI AD

Baseline
Factor 1 (Memory) Factor 1 (Memory) Factor 1 (Executive/visuospatial)
ADAS delayed recall .68 ADAS delayed recall .74 CDT command .66
ADAS recognition .42 ADAS recognition .57 CDT copy .70
RAVLT recall .75 RAVLT recall .65 ADAS construction .71
RAVLT forgetting −.60 RAVLT forgetting −.71 TMT Part A −.59

ADAS cancellation .44
Factor 2 (Executive function) Factor 2 (Language) Factor 2 (Language)
TMT Part A .69 CFT animal .57 CFT animal .59
TMT Part B .77 CFT vegetable .47 CFT vegetable .49

Boston naming test .82 Boston naming test .74
ADAS naming .53 ADAS naming .81

Factor 3 (Attention) Factor 3 (Executive function) Factor 3 (Memory)
Digit span forward .83 TMT Part A −.72 ADAS delayed recall .68
Digit span backward .73 TMT Part B .62 ADAS recognition .54

ADAS cancellation .60 RAVLT recall .63
RAVLT forgetting −.44

Factor 4 (Visuospatial processing) Factor 4 (Attention) Factor 4 (Attention)
CDT command .62 Digit span forward .70 Digit span forward .55
CDT copy .76 Digit span backward .67 Digit span backward .52

Factor 5 (Language) Factor 5 (Visuospatial processing)
CFT animal .46 CDT command .69
CFT vegetable .49 CDT copy .53

6 months
Factor 1 (Memory) Factor 1 (Executive/visuospatial) Factor 1 (Executive/visuospatial)
ADAS delayed recall .73 CDT command .60 CDT command .76
ADAS recognition .41 CDT copy .56 CDT copy .75
RAVLT recall .80 ADAS construction .45 ADAS construction .53
RAVLT forgetting −.56 TMT Part A −.58 TMT Part A −.67

TMT Part B −.62 TMT Part B −.43
ADAS cancellation .51 ADAS cancellation .73

Digit span forward .48
Factor 2 (Executive function) Factor 2 (Memory) Factor 2 (Language)
TMT Part A .72 ADAS delayed recall .86 CFT animal .45
TMT Part B .81 ADAS recognition .50 CFT vegetable .45

RAVLT recall .59 Boston naming test .87
RAVLT forgetting −.70 ADAS naming .72

Factor 3 (Attention) Factor 3 (Language) Factor 3 (Memory)
Digit span forward .67 CFT animal .66 ADAS delayed recall .60
Digit span backward .90 CFT vegetable .59 ADAS recognition .64

Boston naming test .68 RAVLT recall .48
ADAS naming .50 RAVLT forgetting −.65

Factor 4 (Language) Factor 4 (Attention) Factor 4 (Attention)
CFT animal .67 Digit span forward 1.00 Digit span forward .81
CFT vegetable .46 Digit span backward .47 Digit span backward .41
Boston naming test .46

Factor 5 (Visuospatial processing)
CDT command .46
CDT copy .59

12 months
Factor 1 (Memory) Factor 1 (Executive/visuospatial) Factor 1 (Executive/visuospatial)
ADAS delayed recall .82 CDT command .44 CDT command .67
ADAS recognition .45 CDT copy .55 CDT copy .66
RAVLT recall .76 ADAS construction .45 ADAS construction .63
RAVLT forgetting −.41 TMT Part A −.75 TMT Part A −.80

TMT Part B −.74 TMT Part B −.45
ADAS cancellation .57 ADAS cancellation .77

Factor 2 (Visuospatial processing) Factor 2 (Memory) Factor 2 (Language)
CDT command .81 ADAS delayed recall .88 Boston naming test .76
CDT copy .64 ADAS recognition .55 ADAS naming .85

RAVLT recall .68
RAVLT forgetting −.66

(table continues)
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recognition, RAVLT recall and RAVLT forgetting) or a subset of
them always load on one factor; (b) instruments that are supposed to
measure attention and working memory (digit span, forward and
backward) always load on one factor with only one exception (AD,
24 months); (c) the two categorical fluency tests (CFT) and the two
naming tests (Boston naming and ADAS naming) or a subset of
them always load on one factor; (d) the three visuospatial processing
tests (CDT command and copy, and ADAS construction) usually
load on one factor, although ADAS construction was occasionally
absent because its factor loading was not significant; and (e) the
three executive function instruments (trail making test Parts A and
B, and ADAS cancellation) or a subset of them load together either
on the same factor with the three visuospatial processing tests or on
one separate factor.
The second pattern is that across the four sessions: The EFAs point

to a five-factor model (memory, visuospatial processing, attention,
language, executive function) for the HC group, but a four-factor
model (memory, visuospatial processing/executive function, atten-
tion, language) for the MCI (except for baseline) and AD groups. The
five-factor model, particularly, is in strong agreement with prior
theory-driven research on the ADNI battery (Johnson et al., 2012;
Park et al., 2012). The difference between the four- and five-factor
models is that the executive and visuospatial factors are distinct in the

HC group but not in the MCI and AD groups. Although this suggests
that the underlying factor structure may be different among the three
diagnostic groups, that inference requires evidence from measure-
ment invariance testing, which we now consider.

Single Group CFA Results

First, we created CFA models based on the EFA results and fitted
them to the data of each diagnostic group in each session. Because
the EFAs suggested that both a five-factor and a four-factor models
might fit the data, we considered both. To preview, the five-factor
model (Figure 1) delivered a better fit to the data. It turned out that
although the four-factor model provided acceptable fits for the MCI
group (CFI = .90, RMSEA = .06) and the AD group (CFI = .90,
RMSEA = .07) at baseline, it provided a rather poor fit for the HC
group (CFI = .83, RMSEA = .07). Consequently, we did not
consider this model further. In contrast, the five-factor model
delivered acceptable fits across the three diagnostic groups and
across the four sessions.

By default, it is assumed that the underlying cognitive function
accounts for all of the covariation between the tests loading on the
given factor. Accordingly, there should be zero correlation between
the residuals of the tests, which are the shared variance not explained

Table 3 (continued)

HC MCI AD

Factor 3 (Attention) Factor 3 (Language) Factor 3 (Memory)
Digit span forward .81 CFT animal .52 ADAS delayed recall .57
Digit span backward .70 CFT vegetable .56 ADAS recognition .42

Boston naming test .76 RAVLT recall .44
ADAS naming .75 RAVLT forgetting −.40

Factor 4 (Executive function) Factor 4 (Attention) Factor 4 (Attention)
TMT Part A .76 Digit span forward .86 Digit span forward .62
TMT Part B .66 Digit span backward .51 Digit span backward .69

Factor 5 (Language)
Boston naming test .48
CFT animal .72

24 months
Factor 1 (Memory) Factor 1 (Memory) Factor 1 (Executive/visuospatial)
ADAS delayed recall .78 ADAS delayed recall .85 CDT command .51
ADAS recognition .56 ADAS recognition .53 CDT copy .74
RAVLT recall .65 RAVLT recall .77 ADAS construction .71

RAVLT forgetting −.68 TMT Part A −.88
ADAS cancellation .74
Digit span backward .42

Factor 2 (Attention) Factor 2 (Visuospatial processing) Factor 2 (Language)
Digit span forward .98 CDT command .48 CFT animal .53
Digit span backward .53 CDT copy .47 CFT vegetable .58

Boston naming test .91
ADAS naming .79

Factor 3 (Executive function) Factor 3 (Language) Factor 3 (Attention)
TMT Part A .43 CFT animal .41 Digit span forward .90
TMT Part B .80 Boston naming test .97
ADAS cancellation −.52 ADAS naming .67

Factor 4 (Language) Factor 4 (Attention) Factor 4 (Memory)
CFT animal .52 Digit span forward .79 ADAS recognition .47
Boston naming test .56 Digit span backward .68 RAVLT recall .53

Factor 5 (Visuospatial processing)
CDT command .56
CDT copy .56

Note. ADNI = Alzheimer’s Disease Neuroimaging Initiative. The factors are ordered according to sum squared loadings. Only variables with factor loadings
>.40 are displayed in the table. HC = healthy control; MCI = mild cognitive impairment; AD = Alzheimer’s disease; ADAS = Alzheimer’s Disease
Assessment Scale; RAVLT = Rey Auditory Verbal Learning test; CDT = Clock Drawing Test; CFT = Categorical Fluency Test; TMT = Trail Making Test.
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by the factor. However, in empirical research, this is often not true
because tests that share similar assessment methods often have
correlated residuals. In the current circumstance, we relaxed the
residual correlations between ADAS naming test and Boston nam-
ing test based on the modification indices. Our addition of the
particular residual correlation was justified on the ground that the
two naming tests shared very similar testing procedures and
response formats (Brown, 2015).
The final five-factor model is depicted in Figure 1, and its fit

statistics and factor loadings are displayed in Table 4. The third and
fourth rows in Table 4 show that CFIs ≥ .90 and RMSEAs ≤ .08
were nearly always achieved, establishing that the five-factor model
yielded acceptable fits for all groups in all sessions. The only
exception was RMSEA = .09 in the AD group at 24 months, where
there was a Heywood case for the RAVLT recall variable (see the
far-right column of Table 4). After examining the descriptive
statistics, we concluded that the Heywood case was most likely
due to range restriction in the RAVLT recall scores, which resulted
from a floor effect in the AD group’s recall at 24 months. Consid-
ering that the negative variance for RAVLT recall was very small
(−.08), and the model converged, we continued to apply the five-
factor model in the MG-CFAs.

MG-CFA Results

The MG-CFAs evaluated factorial invariance both across groups
and across the 2-year testing interval. We separately report the fit
statistics for factorial invariance between HC and AD groups
(Table 5), between MCI and AD groups (Table 6), and between
HC and AD groups (Table 7). In each pairwise comparison, the
between-group invariance results are separately reported for each
testing session (baseline, 6 months, 12 months, 24 months). The fit
statistics for between-session factorial invariance within each

diagnostic group are displayed in Table 8. In the following sections,
we first discuss whether the factor structure remains stable between
each pair of diagnostic groups and then consider whether the factor
structure stays invariant over the 2-year span within each individ-
ual group.

Invariance Between HC and MCI

In Table 5, it can be seen that configural invariance, which implies
the same number of factors and loading patterns across groups, was
achieved between HC and MCI groups in all of the four testing
sessions (CFIs≥ .93 andRMSEAs≤ .05). Thus, over the 2-year span,
the HC and MCI groups’ data were both satisfactorily captured by a
five-factor model. Similarly, weak invariance was also consistently
established between the HC and MCI groups (CFIs ≥ .91 and
RMSEAs ≤ .06), and so was strong invariance (CFIs ≥ .90 and
RMSEAs ≤ .06). These results show that the factor loadings and factor
intercepts are equal between the two groups, over the 2-year interval.
However, strict invariance was rejected in all of the sessions
(CFIs ≤ .76 and RMSEAs ≥ .09), indicating that the residual
variances were always unequal between HC and MCI subjects.

Invariance Between MCI and AD

The invariance results for MCI versus AD resemble those for
HC versus MCI in the first three sessions but not in the last one.
As can been seen in Table 6, configural invariance (CFIs ≥ .93
and RMSEAs ≤ .06), weak invariance (CFIs ≥ .91 and RMSEAs
≤ .07) and strong invariance (CFIs ≥ .91 and RMSEAs ≤ .07)
were all achieved between the MCI and AD groups across the
baseline, 6 months and 12 months sessions, while strict invari-
ance was consistently rejected (CFIs ≤ .87 and RMSEAs ≥ .08).
However, at 24 months, we were only able to establish configural
invariance (CFIs = .92 and RMSEAs = .08) between the two
groups. Modification indices suggest that the major reason for the
misfits is constraining the factor loadings for TMT Part B
(executive function), RAVLT recall and ADAS delayed recall
(memory) to be equal across the two groups. The failure to
establish weak invariance (CFI = .87 and RMSEAs = .09)
means that strong and strict invariance cannot be achieved,
because the model restrictions for those two levels of invariance
incorporate those for weak invariance (Vandenberg & Lance,
2000; Wu et al., 2007).

To sum up, in the first year, MCI and AD subjects shared the same
five-factor structure, the same factor loadings, and the same factor
intercepts, although the residual variances differed between the two
groups. However, this did not hold in the second year: The basic
five-factor structure was still invariant between the two groups, but
the factor loadings and intercepts were no longer equal.

Invariance Between HC and AD

The picture for the HC versus AD comparison is quite different
from the two comparisons above. In Table 7, it can be seen that
configural invariance was consistently obtained across the four
sessions (CFIs ≥ .90 and RMSEAs ≤ .08). However, there was
only partial support for weak invariance. Although weak invariance
was established between HC and AD groups at 6 months and at
12 months (CFIs = .90 and RMSEAs = .06 and .07), it was not at

Figure 1
The 5-Factor Model for the ADNI Alzheimer’s Disease Neuroim-
aging Initiative Battery
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baseline or at 24 months (CFIs = .87 and .84, RMSEAs = .05 and
.09). This shows that factor loadings were equal between the HC and
AD groups in the 6- and 12-month sessions, but not in the other two
sessions. Modification indices suggest that the major sources of the

unsatisfactory fits were constraining the factor loadings for ADAS
delayed recall (memory), CFT animal and vegetables (language),
and TMT Part B (executive function) to be equal across the two
groups. Because weak invariance was rejected for the data at

Table 4
Single Group Confirmatory Factor Analysis Results of the ADNI Neuropsychological Battery for the Three Diagnostic Groups Across the
Four Sessions

Indicators

Baseline 6 months 12 months 24 months

HC MCI AD HC MCI AD HC MCI AD HC MCI AD

Model fit statistics
χ2 147.48 185.19 160.85 99.38 167.52 169.08 138.52 174.05 141.82 135.92 127.44 275.58
Df 93 93 93 93 93 93 93 93 93 93 93 93
CFI .91 .94 .92 .99 .95 .93 .93 .94 .96 .90 .96 .90
RMSEA .05 .05 .06 .02 .05 .07 .05 .06 .05 .05 .05 .09

Factor loadings memory
ADAS delayed recall .65 .75 .48 .73 .81 .46 .71 .79 .35 .72 .82 .10
ADAS recognition .28 .50 .43 .29 .50 .43 .35 .52 .47 .41 .49 .35
RAVLT recall .82 .76 .95 .86 .73 .94 .91 .82 .83 .80 .86 1.04
RAVLT forgetting −.59 −.62 −.28 −.57 −.68 −.42 −.44 −.64 −.21 −.45 −.60 −.12

Visuospatial
CDT command .83 .70 .77 .55 .84 .81 .87 .73 .76 .75 .80 .78
CDT copy .57 .58 .70 .59 .57 .75 .65 .67 .73 .40 .56 .81
ADAS construction .29 .48 .59 .29 .42 .59 .58 .56 .58 .12 .26 .77

Attention
Digit span forward .99 .55 .47 .81 .65 .56 .70 .52 .71 .63 .75 .66
Digit span backward .60 .86 .82 .77 .84 .88 .87 .96 .71 .90 .75 .80

Language
CFT Animal .74 .75 .78 .75 .72 .77 .74 .72 .83 .71 .78 .89
CFT Vegetable .57 .69 .78 .58 .71 .78 .59 .80 .79 .53 .76 .86
Boston naming test .26 .36 .51 .19 .48 .49 .70 .59 .60 .12 .48 .74
ADAS naming .41 .66 .61 .38 .65 .62 .49 .64 .68 .31 .61 .78

Executive
TMT Part A .59 .66 .74 .66 .75 .77 .77 .71 .82 .55 .74 .87
TMT Part B .87 .84 .67 .89 .79 .68 .73 .91 .58 .71 .92 .63
ADAS cancellation −.29 −.54 −.68 −.40 −.59 −.82 −.44 −.64 −.83 −.54 −.58 −.80

Note. HC = healthy control; MCI = mild cognitive impairment; AD = Alzheimer’s disease; ADAS = Alzheimer’s Disease Assessment Scale;
RAVLT = Rey Auditory Verbal Learning Test; CDT = Clock Drawing Test; CFT = Categorical Fluency Test; TMT = Trail Making Test.

Table 5
MultigroupConfirmatory Factor Analysis Results of the ADNINeuropsychological Battery Across theHCandMCIGroupsWithin the Four Sessions

Session Model χ2 df CFI RMSEA Δχ2 Δdf P ΔCFI

Baseline
Configural 332.67 186 .93 .05 — — — —

Weak 381.62 197 .91 .06 48.94 11 <.01 .02
Strong 423.46 208 .90 .06 41.85 11 <.01 .01
Strict 726.13 224 .76 .09 302.67 16 <.01 .14

6 months
Configural 266.90 186 .96 .04 — — — —

Weak 344.41 197 .93 .05 77.51 11 <.01 .03
Strong 351.69 208 .93 .05 7.28 11 .77 .00
Strict 702.17 224 .76 .09 350.48 16 <.01 .17

12 months
Configural 312.57 186 .94 .05 — — — —

Weak 367.68 197 .92 .06 55.11 11 <.01 .02
Strong 396.64 208 .91 .06 28.97 11 <.01 .01
Strict 739.69 224 .75 .10 343.05 16 <.01 .16

24 months
Configural 263.36 186 .94 .05 — — — —

Weak 313.53 197 .91 .06 50.166 11 <.01 .03
Strong 322.66 208 .91 .06 9.133 11 .61 .00
Strict 618.62 224 .71 .10 295.955 16 <.01 .20

Note. ADNI = Alzheimer’s Disease Neuroimaging Initiative; HC = healthy control; MCI = mild cognitive impairment; RMSEA = root mean squared
error; CFI = comparative fit index; df = degrees of freedom; HC = healthy control; MCI = mild cognitive impairment.
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baseline and at 24 months, we only tested strong invariance for the
6- and 12-month sessions. For these two sessions, strong invariance
was rejected (CFIs = .86 and .83, RMSEAs = .08 and .09), show-
ing that factor intercepts are different for the HC and AD groups.
Accordingly, strict invariance was not tested.
In summary, configural invariance was established between HC

and AD subjects, indicating that a shared set of cognitive functions
was beingmeasured for these two groups.Weak invariance, however,
only held at 6 months and at 12 months, meaning that factor loadings

were sometimes not identical between HC and AD groups. Also, we
found solid evidence against strong and strict invariance between the
two groups, indicating that the factor intercepts and residual variances
are always different between HC and AD groups.

Invariance Over Time

Now, we turn to factorial invariance across time within each
diagnostic group. As shown in the third and fourth columns of

Table 6
Multigroup Confirmatory Factor Analysis Results of the ADNI Neuropsychological Battery Across the MCI and AD Groups Within the Four
Sessions

Session Model χ2 df CFI RMSEA Δχ2 Δdf p ΔCFI

Baseline
Configural 346.04 186 .93 .06 — — — —

Weak 404.67 197 .91 .06 58.63 11 <.01 .02
Strong 430.22 208 .91 .06 25.55 11 <.01 .00
Strict 602.98 224 .84 .08 172.77 16 <.01 .07

6 months
Configural 336.60 186 .94 .06 — — — —

Weak 415.37 197 .91 .07 78.78 11 <.01 .03
Strong 427.32 208 .91 .06 11.94 11 .37 .00
Strict 653.60 224 .83 .09 226.28 16 <.01 .08

12 months
Configural 315.88 186 .95 .05 — — — —

Weak 431.54 197 .91 .07 115.67 11 <.01 .04
Strong 461.53 208 .91 .07 29.99 11 <.01 .00
Strict 645.80 224 .84 .09 184.26 16 <.01 .07

24 months
Configural 403.02 186 .92 .08 — — — —

Weak 537.53 197 .87 .09 134.51 11 <.01 .05
Strong — — — — — — — —

Strict — — — — — — — —

Note. ADNI =Alzheimer’s Disease Neuroimaging Initiative; MCI = mild cognitive impairment; AD = Alzheimer’s disease; RMSEA = root mean squared
error; CFI = comparative fit index; df = degrees of freedom.

Table 7
Multigroup Confirmatory Factor Analysis Results of the ADNI Neuropsychological Battery Across the HC and AD Groups Within the Four
Sessions

Session Model χ2 df CFI RMSEA Δχ2 Δdf p ΔCFI

Baseline
Configural 308.33 186 .91 .06 — — — —

Weak 385.59 197 .87 .05 77.26 11 <.01 .04
Strong — — — — — — — —

Strict — — — — — — — —

6 months
Configural 268.461 186 .95 .05 — — — —

Weak 356.148 197 .90 .06 87.687 11 <.01 .05
Strong 439.246 208 .86 .08 83.098 11 <.01 .04
Strict — — — — — — — —

12 months
Configural 280.34 186 .95 .05 — — — —

Weak 379.05 197 .90 .07 98.71 11 <.01 .05
Strong 519.54 208 .83 .09 140.48 11 <.01 .07
Strict — — — — — — — —

24 months
Configural 411.502 186 .90 .08 — — — —

Weak 546.186 197 .84 .09 134.68 11 <.01 .06
Strong — — — — — — — —

Strict — — — — — — — —

Note. ADNI = Alzheimer’s Disease Neuroimaging Initiative; HC = healthy control; AD = Alzheimer’s disease; RMSEA = root mean squared error;
CFI = comparative fit index; df = degrees of freedom.
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Table 8, in all of the diagnostic groups, the CFIs and RMSEAs are
within an acceptable range for configural invariance (CFIs ≥ .92,
RMSEAs ≤ .07), weak invariance (CFIs ≥ .92, RMSEAs ≤ .07) and
strong invariance (CFIs ≥ .90, RMSEAs ≤ .07). Therefore, the
number of factors, factor loadings, and factor intercepts remained
stable across the 2-year interval, and this is true in all of the three
diagnostic groups. However, strict invariance was satisfied in
the MCI (CFI = .93, RMSEA = .05) and AD groups (CFI = .90,
RMSEA = .07), but not in the HC group (CFI = .86,
RMSEA = .06). This means that while the residual variances are
longitudinally invariant in the MCI and AD groups, they vary across
sessions in the HC group.

Discussion

In this article, we used both exploratory (EFA) and confirmatory
(CFA) factor analysis to evaluate factorial invariance for the ADNI
neuropsychological battery, for three diagnostic groups (HC, MCI,
AD) across 2 years of repeated assessments. With the exploratory
analyses, the results converged on a five-factor model (memory,
visuospatial processing, attention, language, executive function),
which is consistent with an a priori conception that was proposed
for the ADNI baseline data (Johnson et al., 2012; Park et al., 2012).
With the confirmatory analyses, we established that after a minor
modification, the five-factor model fit the data of each diagnostic
group well within each session. When factorial invariance tests of this
model were conducted, we found that although configural invariance
always held across the three diagnostic groups, weak and strong
invariance were only established between the HC andMCI groups for
all four sessions and between the MCI and AD groups for the first
three sessions.Weak invariance held only for certain sessions between
the HC and AD groups, but strong invariance between the two groups
was rejected in all sessions. Strict invariance was always rejected,
across all groups in all sessions. In addition, we found that the factor
structure remained stable across the 2-year testing interval; specifi-
cally, configural, weak, strong, and strict invariance were all satisfied,

except for strict invariance in the HC group. A summary of the
factorial invariance test results is presented in Table 9.

In the initial EFAs, the five-factor model always held for the HC
data, whereas a four-factor model held in most sessions for the MCI
and AD groups. The four-factor model differs from the five-model
only in that it combines two of the factors of the latter model
(visuospatial processing and executive functions). This combined
factor is reasonable, considering the close associations that have
been reported between these two cognitive domains (e.g., Libon
et al., 1994; Miyake et al., 2001). After comparing the two models
with single group CFAs, we concluded that the five-factor model
yielded the best overall fit (see Table 4).

Next, the MG-CFAs showed that configural invariance held
between the HC, MCI, and AD groups in each testing session,
establishing that all three groups’ neuropsychological performance
was captured by the same five-factor structure. Therefore, we can
conclude that the ADNI battery measures the same five cognitive
abilities in all three diagnostic groups. Weak invariance was consis-
tently established between the HC and MCI groups, but not always
established between the MCI and AD groups or between the HC and
AD groups. Statistically, weak invariance means that when test scores
are regressed on their common factors, the regression slopes (factor
loadings) are the same between the groups that are being compared.
Because weak invariance is a precondition for comparing factor
variances and covariances between groups, rejection of weak invari-
ance threatens the soundness of between-group comparisons in
correlation-based or criterion-based validity (Meredith & Teresi,
2006; Tuokko et al., 2009). The two most common examples are
convergent and discriminant validity. In the current context, conver-
gent validity measures whether neuropsychological instruments that
are supposed to tap the same cognitive domain are in fact highly
correlated, which is supported when the instruments all load highly on
the corresponding factor. Discriminant validity measures whether
instruments that are intended to measure distinct cognitive domains
are not highly correlated, which is supported when the instruments
load on different factors. As weak invariance was absent between the
MCI and AD groups at 24 months, and between the HC and AD

Table 8
Multigroup Confirmatory Factor Analysis Results of the ADNI Neuropsychological Battery Across the Four Sessions Within the Three
Diagnostic Groups

Session Model χ2 df CFI RMSEA Δχ2 Δdf p ΔCFI

HC
Configural 521.30 372 .93 .05 — — — —

Weak 586.55 405 .92 .05 65.25 33.00 <.01 .02
Strong 663.17 438 .90 .05 76.61 33.00 <.01 .02
Strict 790.61 486 .86 .06 127.44 48.00 <.01 .04

MCI
Configural 654.20 372 .95 .05 — — — —

Weak 696.63 405 .95 .05 42.43 33.00 .13 .00
Strong 768.19 438 .94 .05 71.57 33.00 <.01 .01
Strict 857.35 486 .93 .05 89.15 48.00 <.01 .01

AD
Configural 747.34 372 .92 .07 — — — —

Weak 813.83 405 .92 .07 66.50 33.00 <.01 .01
Strong 863.03 438 .91 .07 49.20 33.00 .03 .00
Strict 967.17 486 .90 .07 104.13 48.00 <.01 .01

Note. ADNI = Alzheimer’s Disease Neuroimaging Initiative; RMSEA = root mean squared error; CFI = comparative fit index; df = degrees of freedom;
HC = healthy control; MCI = mild cognitive impairment; AD = Alzheimer’s disease.
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groups at baseline and 24 months, it is statistically inappropriate to
compare convergent or discriminant validity between diagnostic
groups in these particular sessions of the ADNI dataset.
In addition, although strong invariance was consistently observed

between the HC and MCI groups and between the MCI and AD
groups in three of the four sessions, it was never observed between
the HC and AD groups. Statistically, the failure to establish strong
invariance shows that the factor intercepts are not identical between
groups (Beaujean, 2014; Brown, 2015). Consequently, the groups’
average scores on particular instruments are not equal when factor
scores are 0. Thus, even with the same factor-test regression slope
across groups, the same test score will still be calibrated to different
factor scores. Therefore, it is statistically inappropriate to compare
factor scores betweenMCI and AD groups during one of the sessions
(24 months) or between HC and AD groups in any session. This is an
important limitation considering that some researchers have argued
for the discriminant or predictive power of factor scores (Chapman
et al., 2010; Giraldo et al., 2017). Apart from factor scores, another
common practice for comparing group means is to calculate group
differences in composite scores. However, it is often overlooked that
it is only justifiable to compare composite scores when observed
means are equally calibrated to latent means across groups, which
requires equal factor loadings and intercepts (Steinmetz, 2013).
Therefore, if strong invariance is rejected between HC and AD
groups and sometimes between MCI and AD groups, this may
threaten the legitimacy of findings based on between-group compar-
isons in composite scores for the ADNI battery.
The picture for between-session factorial invariance is quite

different. In all three groups, the five-factor structure was stable
across the four sessions, satisfying all four levels of invariance, with
only a minor departure from the strict invariance criterion in the HC
group. Thus, within each diagnostic group, the factor configuration,
factor loadings, and factor intercepts were all longitudinally invari-
ant, and thus, convergent and divergent validity, test scores, and the
means of factor scores can all be directly compared between
sessions. This is especially meaningful when it comes to tracking

longitudinal changes in cognitive functions. For instance, in longi-
tudinal research, the latent growth model (LGM) is a commonly
used statistical method that measures both group-level growth and
individual differences in growth. However, the use of this method is
only warranted when weak and strong invariance are established
longitudinally (Ferrer et al., 2008; Vandenberg & Lance, 2000).
Because we found that both weak and strong invariance held across
a 2-year span within each ADNI diagnostic group, LGM would be
an ideal tool to analyze longitudinal patterns of the ADNI data
within single diagnostic groups.

Overall, the EFA and MG-CFA results agree on two key points:
Factor structures are invariant across testing sessions but not across
diagnostic groups. There is a slight discrepancy between the EFAs
and CFAs with respect to the number of factors per diagnostic
group. EFAs suggest a five-factor structure for the HC group and a
four-factor structure for the MCI and AD groups, but the MG-CFAs
showed that a five-factor structure held across the three diagnostic
groups (configural invariance). Such a discrepancy is not surprising,
considering that the number of factors is specified a priori in CFA,
but it is based on both statistical criteria (eigenvalues, scree plots,
and parallel analysis) and theoretical criteria (e.g., parsimony,
interpretation) in EFA.

It is worth mentioning that the current findings are broadly
consistent with Park et al. (2012). Those authors analyzed the
baseline ADNI data and established all four levels of invariance
between two subject groups: less versus more functionally impaired
subjects. Here, the points of disagreement between our results and
Park et al.’s are most likely due to differences in the subject groups
that were compared. Our subject groups reflected clinical diagnoses,
whereas Park et al. performed a median split on the CDR-SOB (sum
of scores) and divided the total ADNI sample into less and more
impaired groups. They argued that this avoided circularity that
would be inherent in using the ADNI neuropsychological battery
to form diagnostic groups as well as to conduct factor analyses.
However, we thought it was advisable to use the clinical diagnoses
for group classification for three reasons.

First, to our minds, there is no circularity problem because the
battery test scores are not the only basis for ADNI diagnoses.
Clinicians based those diagnoses on multiple sources of information,
which included medical histories, genetic data, plasma and serum
biomarkers, MRI data, and neuropsychological battery test scores.
However, only the battery test scores figured in our factor analyses.
Second, if the use of the clinical diagnoses to form comparison groups
creates a circularity problem, it is unclear how using CDR scores to
form comparison groups avoids that problem. That is because
different CDR cutoffs were used for different diagnostic group in
the ADNI screening procedure (see the Method section), making
CDR scores one of the determinants of diagnostic groupmembership.
From a psychometric point of view, relying on CDR scores would
simply be a less reliable method of forming comparison groups than
relying on the diagnoses. Third, the median split method has often
been criticized for reducing statistical power and increasing Type II
error (e.g., McClelland et al., 2015; Rucker et al., 2015), which we
hope to avoid. More importantly, median splits will inevitably
increase within-group heterogeneity by mixing subjects who differ
in severity of cognitive impairment. Thus, establishing factorial
invariance between groups that have been formed using median
splits, even if psychometrically acceptable, is less clinically

Table 9
Summary of Multigroup Confirmatory Analysis Results

Types of invariance Levels of invariance supported

Between-group invariance
HC versus MCI – baseline Configural, weak, strong
HC versus MCI – 6 months Configural, weak, strong
HC versus MCI – 12 months Configural, weak, strong
HC versus MCI – 24 months Configural, weak, strong
MCI versus AD – baseline Configural, weak, strong
MCI versus AD – 6 months Configural, weak, strong
MCI versus AD – 12 months Configural, weak, strong
MCI versus AD – 24 months Configural
HC versus AD – baseline Configural
HC versus AD – 6 months Configural, weak
HC versus AD – 12 months Configural, weak
HC versus AD – 24 months Configural

Within-group longitudinal invariance
HC Configural, weak, strong
MCI Configural, weak, strong, strict
AD Configural, weak, strong, strict

Note. HC = healthy control; MCI = mild cognitive impairment;
AD = Alzheimer’s disease.
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meaningful. This is a rather important consideration, as clinical
application is a core motivation of ADNI research (e.g., Johnson
et al., 2012).
Last, we should acknowledge that our sample size is smaller than

some of the prior studies that examined factorial invariance in aging
and dementia (e.g., Hayden et al., 2011; Siedlecki et al., 2008).
Currently, there are still debates about what sample size is ideal for
factor analyses (Kline, 2005; Maccallum et al., 1999; Wolf et al.,
2013). In empirical research, the most frequently quoted rule of
thumb is a minimum sample size of 100 or 200 (Boomsma, 1982,
1985) and 10 observations per variable (Nunnally, 1994). Our
sample satisfies such requirements. Meanwhile, we only included
variables with KMO > .5 in our analyses, which ensures sampling
adequacy. For these reasons, sample size should not be a threat to the
validity of our results.

Conclusion

For the three ADNI diagnostic groups, we established configural
invariance and found some support for weak invaraince across these
groups. This suggests that the tests in the ADNI neuropsychological
battery tap the same cognitive functions in all of these groups. At a
more fine-grained level, however, the failure to establish strong
and strict invariance argues for caution in making between-group
inferences about cognitive functions based on group differences in
test scores or factor scores. Without these forms of invariance, the
quantitative relation between scores on the individual tests and
true scores of the cognitive functions that they measure may not
be the same for different diagnostic groups. In addition, we estab-
lished configural, weak, and strong invariance across the 2 year
testing interval, for each diagnostic group. This is particularly
important when it comes to interpreting longitudinal changes in
test scores within each diagnostic group. It shows that between-
session declines in test scores are due to changes in the underlying
cognitive functions, rather than to a change in what the tests
measure.
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